DoD Space Transportation Perspective NASA Exploration Transportation Strategic Roadmap Federal Advisory Committee Meeting #1 3-4 February 2005 Orlando, Florida Colonel Jim Knauf Chief, Space Support & Force Application Directorate of Space Acquisition Office of the Undersecretary of the Air Force ### **Overview** - Space Transportation Environment DoD perspective - EELV - Operationally Responsive Launch - Next generation space transportation - Space launch ranges ## Environment – DoD Perspective - Increasing dependence on space for national security - Consequent need for assured access to space - Backup capability - Protection of half of manifest - Industrial base **Robust** Responsive Resilient - Warfighter need for responsiveness - Augmentation or reconstitution of existing capabilities - High level interest, intensifying definition - Anemic commercial launch market - Extremely challenging fiscal environment Emerging Need for Responsive, Assured Access to Space Challenging Environment # Space Transportation – Feb 2005 Snapshot - Fly out remaining Delta II and Titan IVs - Transition to EELVs and sustain through ~2020 - Extend if cost effective, or develop alternative - Demonstrate, develop, deploy ORS capability by 2010 - Transform launch and test ranges into responsive global launch and test range - Leverage (and define?) "next generation" space transportation technology - Work with NASA (pending requirements) - Focus on breakthrough technologies ## **DoD Space Transportation Roadmap** ### **EELV** Eutelsat Hotbird 6 Atlas V 21 Aug 02 Eutelsat W5 Delta IV 20 Nov 02 DSCS A3 Delta IV 10 Mar 03 Hellas Sat Atlas V 13 May 03 Rainbow 1 Atlas V 17 Jul 03 DSCS B6 Delta IV 29 Aug 03 AMC-16 Atlas V (521) 17 Dec 04 HLV-Demo Delta IV 21 Dec 04 * Evaluating early MECO anomaly 8 successful launches to date* #### **EELV** - 26 NSS missions + HLV Demo contracted (3 flown) - AF revising acquisition strategy from commercial approach to more traditional - Fixed infrastructure plus launch services - TBR: infrastructure cost sharing for non-AF / NRO - Existing Delta IV and Atlas V design variants meet known national security requirements - Growth variants could support NASA needs Delta IV, Atlas V can provide space transportation infrastructure to meet both DoD and NASA needs ## Responsive Spacelift - Key element is "Responsiveness" - Hours to days vs. weeks to months to launch - First step: demonstrate responsive launch capability (Small Launch) via Falcon demonstration program - Develop, test, produce operational capability by 2010 - Working responsive payloads, C2, and CONOPS in parallel - Demonstrate military utility/support warfighter Operationally Responsive Spacelift CONOPs Development and Demonstration of Military Utility are Underway ### Falcon Small Launch Vehicle ### Ranges - Essential aspect of space transportation - Upgrades and sustainment last 10 years have focused on modernization / sustainment of existing capabilities - Joint AF / NASA (+ others) Advanced Range Technology Working Group - Identify technology needs - Develop roadmap - Develop plan approaches and options for next generation ranges Transformation of Ranges needed to support responsive space # Next Generation / S & T (Examples) - Cooperative technology efforts w/NASA - Integrated High Payoff Rocket Propulsion Technology Program: 3 phase, 15 year national program to double space /missile propulsion capability, decrease cost and increase reliability by 2010 - Hypersonics: X-43 hydrocarbon scramjet - SMC, AFRL, AFSPC Affordable Responsive Spacelift (ARES): - 10K LEO Hybrid (1st Stage Reusable / 2nd Stage Expendable) - DARPA RASCAL, Falcon (w/AF & NASA) - AFRL - AESIR Reusable Liquid Oxygen/Liquefied Natural Gas (LOX/LNG) Launch Vehicle Technology "Holy Grail:" The Space Analogy of Aviation's Jet Engine ### **Conclusion** - DoD needs Assured Access and Responsive Launch, therefore... - Need two EELV providers; intend to support consistent w/NSPD - Also an enabler for evolving NASA needs - Need Operationally Responsive Launch by 2010 - Potential start on next generation space transportation - Need to work with NASA on EELV evolution and next generation - Pending determination of NASA requirements; - Focus "next generation" on breakthrough technologies - Space launch range modernization/evolution consistent w/above DoD is ready to work with NASA to support space transportation needs # **Backups** ## Delta IV HLV Demo 21 Dec 2004 - Demonstration met primary objectives - Activating and launching HLV from Delta IV launch pad - Flying three common booster cores (CBC) - Separating 2 strap-on CBCs from the center CBC - Flying/separating 1st 5-meter diam. composite payload fairing - Flying 1st 5-meter diam. cryogenic upper stage through a long duration, 3-burn profile of the RL10B-2 engine - Premature MECO on core and strap-on CBCs - Fault tree analysis underway - Apparent cavitation-type disturbance in LOX flow; engine cutoff sensors reacted, falsely indicating LOX depletion - Aiming for fault tree closeout and identify cause by mid-Feb - Next mission (DSP-23) still scheduled for Aug 2005 #### NOTES: - 1. Buy 1 Launches are red and ordered are underlined - 2. Buy 2 missions - 3. Buy 2.5 - 4. Buy 3 proposed in blue box #### **EELV Launch Schedule** | EELV | FY04 | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | FY13 | |---|------|--|--|------------------------------|---|---|--|---|--|--| | Boeing
Delta IV
CCAFS
SLC-37B | • | HLV DSP
Demo 23
Dec Aug | NRO WGS
L-26 #1
Dec (5,4) | GPS
IIF-1
(4,0)
Nov | GPS
IIF-5
(4.0)
Jul | | GPS GPS
IIF-9 IIF-10
(4,0) (4,0)
Dec Apr | SBIRS
G3
(4,2)
Jun | | | | Boeing
Delta IV
VAFB
SLC-6 | | NRO DMSP
L-22 #17
(4,2) (4,0)
Jul Aug | NRO
L-25
(4.0)
Mar | | | | | | | | | Lockheed-Martin
Atlas V
CCAFS
SLC-41 | | | WGS NRO STP #2 L-30 #1 (521) (401) NET Jun Mar Sep | #3 IIF-2 L-24 | GPS GPS SBIRS
IIF-3 IIF-4 G1
(401) (401) (401)
Oct Dec Jun | GPS SBIRS GPS
IIF-6 G2 IIF-7
(401) (401) (401)
Jan Jun May | GPS
IIF-8
(401)
Oct | | | | | Lockheed-Martin
Atlas V
VAFB
SLC-3E | | | NRO
L-28
(411)
May Jul | NRO
L-41
(501)
Sep | DMSP
#18
(401)
Oct | NRO
L-39
(501)
NET Oct | NRO
L-45
(501)
NET Oct | | | | | | FY04 | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | FY12 | FY13 | | CCAFS Unawarded | | | | | AEHF-1 Apr
NROL-32 Oct | AEHF-2 Apr
WGS- 4 Jun
NROL-34 Jul
NROL-27 Jan
MUOS-1 | AEHF-3 Apr
WGS-5 Jun
STP-2 Apr
NROL-15 Apr
NROL-38 Oct
MUOS-2 | GPS IIF-11 Oct
GPS IIF-12 Jan
GPS IIF-13
Apr
STTR-1 Jan
MUOS-3 | GPS IIF-14 Oct
GPS IIF-15 Mar
GPS IIF-16 Aug
SBIRS-G4 Jun
SBSS-1&-2 Jun
NROL-36 NET Jan
NROL-46 NET Jan
NROL-33 NET Jul | GPS III-1 Jun
GPS IIF-17 Dec
GPS IIF-18 Apr
GPS IIF-19 Sep
SBIRS-G5 Jun
TSAT-1 Mar
ODSI 1a&b Jan | | VAFB | | | | | NROL-43 Jan | DMSP-19 Apr | NPOESS-1 Nov | NPOESS-2 Jun | DMSP-20 Oct
NROL-47 NET Jan | NPOESS-3 Jun
NROL-35 NET Jul
NROL 59 NET Oct | As of: 14 Jan 05 # **EELV**Boeing Delta IV Family # **EELV**Lockheed-Martin Atlas V Family #### **Major Components:** - Upper Stage Engine Pratt&Whitney RL-10A4 (West Palm Beach, FL) - •5-M Fairing Contraves (Zurich, Switzerland) - •4-M Fairing Lockheed (Harlingen, TX) - •Common Core Booster(CCB) Lockheed (Denver, CO) - •Solid Rocket Boosters Aerojet (Sacramento, CA) - Main Engine – NPO Energomash RD-180 (Khimky, Russia) 10,910 13,120 8,750 11,620 13,850 15,880 17,680 19,120 29,000 --- Performance to GTO (lbs) # Affordable REsponsive Spacelift (ARES) - Description - 10K to LEO Hybrid Vehicle (1st Stage Reusable and 2nd Stage Expendable) - Demonstrate affordable & responsive spacelift capability - Team - SMC/TD, AFSPC/DR, AFRL - POCs - TD Lead: Mr. Ken Hampsten #### Status - 15 Jul 04, AFROCC approved Operationally Responsive Spacelift Analysis of Alternatives (ORS AoA) results and recommends: Spiral development of hybrid sub-scale demo to full scale ops vehicle - AFRL RSAT and S&T Vector 1 study results support ARES #### Issues - Solidify commitment - Brief AFSPC/CC 24 Jan 05 - Funding - FY05-06 AFSPC and AFRL funds for concept development - FY07-11 POM funds subscale design, build and demo ### ARES Overview Reusable 1st Stage with Expendable Upper Stages - Provides optimally-sized vehicle for cost and responsiveness - Approx \$2,000 / lb to LEO - 1-2 Day Turn Times Fly-Back Jet Engines Adaptive GN&C Mach 7 Separation 1/3 the development cost of a RLV 1/3 the recurring cost of an ELV Integrated Warm Structure (no Shuttle TPS) Long-Life Hydrocarbon Propulsion ARES reduces launch costs by a factor of 3